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ON ERGODIC QUASI-INVARIANT MEASURES 
OF GROUP AUTOMORPHISM 

BY 

S. G. DANI 

ABSTRACT 

We study the dynamics of projective transformations and apply it to (i) prove 
that the isotropy subgroups of probability measures on algebraic homogeneous 
spaces are algebraic and to (ii) study the class of ergodic quasi-invariant 
measures of automorphisms of non-compact Lie groups. It is shown that their 
support is always a proper subset and that under certain conditions on the Lie 
group the induced homeomorphism of the support is topologically equivalent to 
a translation of a compact group. 

In [4], using a simple result on the dynamics of projective transformations the 
author obtained a proof of Borel's density theorem in a general form. It turns 

out that a similar approach is useful in various other problems. It is the purpose 

of this article to give two more applications of the general idea. 

The first application consists of strengthening a result of C. C. Moore 
(theorem 2.7, [9]). We assert that if G is an R-algebraic group and H is an 

R-algebraic subgroup of G then the isotropy subgroup of a finite measure/z on 
G/H contains a co-compact normal subgroup which fixes the support of 
pointwise (cf .  Corollary 2.6). In particular, the subgroups are R-algebraic. 
Further, one also obtains a criterion for amenability of the isotropy subgroup of 

t~ in terms of the isotropy subgroups of the points in the support of t~. 
The second result pertains to non-wandering sets and quasi-invariant meas- 

ures of group automorphisms. We prove that if G is either isomorphic to a real 

vector group or if it is a connected Lie group with trivial center, A is a 

continuous automorphism of G, then the restriction of the action of A to the 

non-wandering set of A, extends to a continuous action of a compact group (cf. 

Theorems 3.1 and 3.2). This signifies that the ergodic dynamical systems arising 

from choosing various A-quasi-invariant non-atomic measures on G are all 
metrically conjugate to translations on compact abelian groups (cf. Corollary 
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3.5). We then show that if G be any connected locally compact non-compact 

group then there exists a non-compact factor group G/N, by a characteristic 

closed subgroup N, such that G/N is a Lie group belonging to the class referred 

to above. Thus any continuous automorphism A of such a group has a factor 

automorphism having properties as in the special case (cf. Theorem 3.7) and 

consequently the action of A on G admits no dense orbits (Corollary 3.8); it also 

follows that if IX is an ergodic A-quasi-invariant measure on G then IX is 

supported on a proper closed subset of G (cf. Corollary 3.9). 

In particular, the Haar measure of a connected locally compact non-compact 

group is not ergodic with respect to any continuous automorphism. This 

particular corollary was proved earlier by R. Kaufman and M. Rajagopalan [6] 

and also by R. K. Thomas [10]. The author would like to note, however, that the 

proof offered in [10] for the general result, Theorem 3.1, is incorrect. This is 

because, towards the end of the proof, it is implicitly assumed that the image of 

any connected Lie group under its adjoint representation is closed, which is 

well-known to be false. Though with some work it is possible to salvage the 

above-mentioned assertion of non-ergodicity of the Haar measure, indeed even 

with respect to any affine transformation as considered there, the "property D" 

does not seem to be easily recoverable. For automorphisms the "property D" 

evidently follows from our results (cf. Theorem 3.7 and Corollary 3.4). 

Before concluding the introduction the author would like to thank H. 

Furstenberg for valuable suggestions; in particular, he pointed out that the 

results, originally formulated for quasi-invariant measures, may also be viewed 

fruitfully to be results about the non-wandering sets of the automorphisms. 

w Preliminaries 

Let X be a second countable topological space and ~o be a homeomorphism of 

X onto itself. An element x E X is said to be non-wandering with respect to ~o 

(or a non-wandering point of ~0) if for any neighbourhood U of x there exists 

n t> 1 such that ~o n U f'l U is non-empty. The set of all non-wandering points of ~o 

is a closed set; for brevity, it is called the non-wandering set of ~o. We say that 

q~ is a non-wandering homeomorphism of X if every element of X is 

non-wandering with respect to q~. 

By a measure on X we shall always mean a positive tr-finite Borel measure. 

The support of a measure IX, denoted by supp IX, is the smallest closed subset of X 

whose complement has zero /z-measure. A measure /z on X is said to be 

~-invariant if /z(~0(E))=/z(E) for all Borel sets; /z is said to be ~o-quasi- 
invariant if for a Borel set E, IX(~0(E))= 0 holds if and only if Ix(E)= 0. A q~- 



64 s.G. DANI Isr. J. Math. 

quasi-invariant measure is said to be ergodic if /~(~p(E)A E ) =  0 implies that 

e i the r /~(E)  = 0 o r / z ( X  - E )  = 0. 

1.1. RE~ARKS. If /Z is a ~p-quasi-invariant measure then suppp, is q~- 

invariant. I f /z  is a finite ~p-invariant measure, then supp ~ is contained in the 

non-wandering set of q~. If/z is an ergodic r measure then either 

supp/z is contained in the non-wandering set of q~ or there' exists x E X such 

that the orbit E = {~J(x)I j  E Z} of x under r is relatively discrete (i.e. open in 

its closure) and t t ( X -  E ) =  0. 

We shall now recall a result from [4] on the non-wandering sets of linear and 

projective transformations. Let V be a finite dimensional R-vector space where 
R is the field of real numbers. We denote by P(V)  the projective space 

associated to V and by 7r : V - (0)---> P(V)  the natural quotient map. We denote 

by GL(V)  the (topological) group of all non-singular linear transformations of V. 

Any r E GL(V)  induces a homeomorphism ? of P(V) .  All homeomorphisms of 

P(V)  of the form ~ as above are called projective transformations. 

An element z ~ G L ( V )  is said to be bounded if {~-J [j EZ}  is a relatively 

compact subset of GL(V).  It is well-known that r E GL(V)  is bounded if and 

only if it is semisimple and all its (complex) eigenvalues are of unit absolute 

value. An element z ~ GL(V)  is said to be projectively bounded if there exists 

h E R - ( 0 )  such that hz is bounded. In the sense of [4], where these notions 

were introduced for linear transformations of (finite dimensional) vector spaces 

over any locally compact non-discrete field, ~" ~ GL(V)  is projectively bounded 

if there exists h E R - (0) and a positive integer m such that h~- '~ is bounded. It 

may be noted, however, that for the field of real numbers the two notions are 

equivalent; this may be proved easily using the observation preceding the above 
definition. 

The result from [4] sought after is the following: 

1.2. PROPOSITION (C[. lemma 4.1, [4]). Let V be a finite dimensional R-vector 

space and let ~ E GL(V).  Let II be the non-wandering set of the projective 

transformation ~. Then there exist finitely many 7-invariant subspaces 

W1, W2, . . . ,W,  of V such that (i) 12=U~=lTr (Wj - (0 ) )  and (ii) z / W  i is 
projectively bounded for all j = 1, 2 , . . . ,  r. 

1.3. COROLLARY. Let ~ be a linear transformation of a vector space V as 
above. Let W be the non-wandering set of T. Then W is a "c-invariant subspace and 

z~ W is bounded. In particular, orbits of all elements in supp/x are bounded, if lz is 

a finite z-invariant measure. 
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PROOF. Let f~ be the non-wandering set of ~. Then by Proposition 1.2 there 

exist z-invariant subspaces W1, W2,.-., W, such that for all j = 1, 2 , . . . ,  r, 7/Wj 

is projectively bounded and l~ = U r -(0)).  Since, evidently, r r ( W -  (0)) is 

contained in lq we now deduce that W is contained in U Wj. Fix an index j 

between 1 and r such that W n w j~  0. We recall that since z/Wj is projectively 

bounded it has the form A/r, where At E R -  (0) and crj is a bounded linear 

transformation of Wj. On Wj there exists a norm which is invariant under trj. 

Using this norm it is straightforward to check that the transformation Ai~ admits 

a non-wandering point in Wj other than zero, only if I~ I = 1. We deduce that 

z/W/ is bounded. Now let W' be the subspace spanned by { Wj [ W n Wj ~ 0}. 

Then clearly z /W '  is bounded and W is contained in W'. On the other hand, 

since for a bounded linear transformation every point is non-wandering, W' is 

contained in W. Thus W = W', which yields the corollary. 

w Group actions and measures 

We shall now consider actions of groups of linear and projective transforma- 

tions. Let V be a finite dimensional R-vector space and let P(V),  GL(V) etc. be 

as in w GL(V) acts as a group of linear transformations on V and as a group of 

projective transformations on P(V). In the sequel we consider actions on V and 

P(V)  simultaneously and by the action of GL(V), or any of its subgroups, we 

mean the respective actions as above. Let F be a non-empty closed subset, either 

of V or of P(V). Let L be the smallest quasi-linear variety (i.e. finite union of 

subspaces) such that F is contained in L, or, respectively, in ~ ' ( L -  (0)). For 

g E GL(V) such that g(F) = F, we denote by g/F the restriction of the g-action 

to F. Now put 

Ca = {g E GL(V) [ g(F) = F and g/F  is a non-wandering homeomorphism}, 

(2.1) Ix = {g E GL(V)[ gx = x for all x E F}, 

Nx = {g E GL(V)  I g(L ) = L}. 

Then Ix and Nv are R-algebraic subgroups of GL(V) (i.e. intersections with 

GL(V) of algebraic R-subgroups of GL(V@C)) .  Further Ix is a normal 

subgroup of Nx. In general Ca may not be a subgroup. However, g ~ Cx implies 

that g' E Cx for all r E Z. We also note that Ix C Ca C NF. 

2.2. THEOREM. Every element of Cx/I~ is contained in a compact subgroup of 
Nx / Ix. If H is a closed subgroup such that Ix C H C Cv then H / I,~ is compact. 
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PROOF. Let W,, W2,. �9 ", W, be the maximal subspaces of L. Let N ~ be the 

subgroup of those elements of NF which leave each Wj invariant. We note that 

N ~ is a subgroup of finite index in NF. Consider the homomorphism 

: N~ GL(W,) • GL(W2) x . . .  x GL(W,) where for g E N ~ the j th  com- 

ponent of o(glF) is defined to be the restriction of g to Wj. Since N ~ is an 

R-algebraic subgroup, the image of O is a closed subgroup of the product (cf. 

Lemma 2.3 below). We now show that for all g E CF f3 N ~ gIF is contained in a 

compact subgroup of N~ Consider first the case when F is a (closed) subset of 

V. In this case, by Corollary 1.3, the components of o(gI~) are bounded. Hence 

o(glF) is contained in a compact subgroup of the image of O. Also, in the present 

case the kernel of Q is precisely IF. Hence we deduce that gIF is contained in a 

compact subgroup of N~ Next suppose that F is a subset of P(V). In this case 

by Proposition 1.2 for g ~ CF fq N ~ Q(glF) is of the form (Alo.l, A2o.2," �9 ", A,o.,) 

where A~,A2,...,A, are positive scalars and o.J,o.2,'" ",or, are bounded. It is 

straightforward to show that (AII,, A212, �9 �9 ", A J,), where L, 12," �9 -, L denote the 

identity transformations of the respective spaces, is contained in the image of Q. 

Hence (o.1, o'2," �9 ", o',) is also contained in the image of O. Further, it must indeed 

be contained in a compact subgroup of the image. Since O ~(A,It, A212,'' ", A,L) 

as well as the kernel of O are contained in IF we deduce that gIF is contained in a 

compact subgroup of N~ Since N ~ has finite index in NF it now follows that 

for all g E CF, glF is contained in a compact subgroup of NF/Ir. 
Now let H be a closed subgroup as in the hypothesis. Then in view of the 

above every element of H/IF is contained in a compact subgroup of NF/I~. But 

NF/IF is a closed subgroup of an algebraic group (cf. theorem 5.6 in [1] and 

Lemma 2.3 below). Hence, in particular, H/IF may be viewed as a closed 

subgroup of GL(n, R) for some n. The compactness of H/IF now follows from a 

lemma of C. C. Moore (cf. lemma 7.1 in [8]). 

In the sequel we need an analogue of the above theorem for a wider class of 

groups, in the place of GL(V). A subgroup G of GL(V) is said to be almost 
algebraic if G is open in an R-algebraic subgroup of GL(V). We note that in this 

case G has finite index in its Zariski closure in GL(V). The following lemma is 

well-known; we include a brief proof for ready reference. 

2.3. LEMMA. Let G be the group of R-elements of an algebraic group G defined 
over R. Let O : 0 - ~ G L ( V c ) ,  where Vc = V @ C ,  be an (algebraic) representa- 
tion defined over R. Then o(G) is an almost algebraic subgroup of GL(V). In 
particular, it is a closed subgroup of GL(V). 

PROOF. It is well-known that O(O) is an algebraic subgroup of GL(Vc) 
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defined over R (cf. corollary 1.4, [1]). From this, one deduces that the 

C-dimension of p(G) coincides with the dimension of o(G) as a Lie group. 
Hence by the inverse function theorem Q(G) is an open subgroup of o ( G ) n  

GL(V). Since Q(G) is an algebraic group it now follows that Q(G) is an almost 

algebraic subgroup of GL(V). 

2.4. COROLLARY. Let V be a finite dimensional R-vector space. Let F be a 

closed subset of either V or P(V)  (notations as before). Let G be an almost 
algebraic subgroup of GL(V). Then every element of (CF n G)/(IF O G) is 

contained in a compact subgroup of (NF n G)/(IF n G). 

PROOF. Let ~- E CF n G. Let H be the closed subgroup of GL(V) generated 

by r and IF. Since ~- E CF, by Theorem 2.2 H/IF is compact. Using the fact that a 

compact subgroup of a real linear group is an R-algebraic subgroup (cf. chapter 

VI, [3]), one deduces that H itself is an R-algebraic subgroup of GL(V). Hence 

H n G is an almost algebraic subgroup of GL(V). Therefore (H n G)IF is a 

closed subgroup. Since H/IF is compact so is (H n G)IF/I~. In other words 

(H n G)/(I~ n G) is compact, which proves the corollary. 

2.5. COROLLARY. Let V be a finite dimensional R-vector space and let Ix be a 

finite measure on V or P(V). Let G be an almost algebraic subgroup of GL(V). 

Let G,. be the subgroup consisting of all elements of G whose action leaves I~ 
invariant. Let Iv = IF, where F = support of I~. Then G~/G,, n I,, is compact. 

PROOF. Let GL(V), be the subgroup consisting of all g E GL(V) such that/z 

is invariant under the action of g. Then GL(V)~ is a closed subgroup containing 

L. Further, by Remark 1.1 GL(V)~ is contained in CF as defined by (2.1), where 
F = support of /z. Hence by Theorem 2.2, GL(V), , /I ,  is compact. As in the 

proof of Corollary 2.4 this implies that GL(V),~ is an R-algebraic subgroup. 
Hence G,, = G O GL(V), is an almost algebraic subgroup. Hence G~I~ is a 

closed subgroup and G,I,,/I~ is compact. Therefore G,/G~ n Iv is compact. 
The following corollary generalises a result of C. C. Moore (cf. Theorem 2.7, 

[9l). 

2.6. COROLLARY. Let G and H be almost algebraic subgroups of GL(n, R), for 

some n >= 1, and suppose that H is contained in G. Let tz be a finite measure on 

G/H. Let 
G~ = {g E G I the g-action on G / H preserves I~ } 

and 

J~ ={g E G I gx = x for all x Esupp/z} 
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(where the action refers to the action by translation on the left). Then G~ is an 

R-algebraic subgroup of G containing J,, as a normal subgroup and G~/J~ is 

compact. In particular, G~, is an amenable group if and only i[ J~ is amenable. 

PROOF. Under the above hypothesis there exists a representation 0 of G 

over a finite dimensional R-vector space V and a non-zero vector v ~ V such 

that H is the isotropy subgroup of either v E V or r  under the 

respective actions induced by Q (cf. for instance, proposition 7.8, [2]). The 

measure/z on G / H  can be canonically identified with a measure on the G-orbit 

of v or zr(v) respectively. Application of Corollary 2.5 then yields that G~/J~ is 

compact. Since J,, is an R-algebraic subgroup, as in the proof of Corollary 2.4 we 

deduce that G~ is also R-algebraic. The assertion about amenability is obvious. 

w Quasi-invariant measures of group automorphisms 

We first study quasi-invariant measures of automorphisms of certain special 

groups and combine it to obtain certain general results. We note that by an 

automorphism we always mean a continuous automorphism. 

3.1. THEOREM. Let G be a group topologically isomorphic to R", n >= l. Let A 

be an automorphism of G and let F be the non-wandering set of A. Then there 

exists a continuous action of a compact group K on F and k ~ K whose action 

coincides with that of A. 

PROOF. In this case G has the structure of an n-dimensional R-vector space 

such that the automorphism A is a linear transformation. By Corollary 1.3, F is 

an A-invariant subspace and the restriction A / F  of A to F is a bounded linear 

transformation. Let K be the closed subgroup of GL(F) generated by A/F.  

Then K is a compact group with a continuous action on F, extending that of A. 

3.2. THEOREM. Let G be a connected Lie group with trivial center, A an 

automorphism of G and let F be the non-wandering set of A. Then there exist a 

continuous action of a compact group K on F and k E K whose action coincides 

with that of A. 

PROOF. Let 0 be the universal covering group of G. Let Z denote the center 

of 0.  Since G has trivial center it follows that Z is discrete and that G is 

topologically isomorphic to G/Z. We shall identify G with O/Z. 
Let A u t ( 0 )  be the (topological) group of all Lie automorphisms of O. Since 0 

is simply connected, Aut(O) is isomorphic to the group of all Lie automorphisms 
of the Lie algebra ~ of G. In particular Aut(O) is an R-algebraic subgroup of 

GL((~). Let Aft(G) be the group of all afline automorphisms Tx.z  where 
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~- ~ Au t (d )  and T~ denotes the left translation of 0 by x ~ G. We shall identify 

d with the subgroup of Aft(0)  consisting of all left translations. Att(G) is then a 

semi-direct product of Aut(G) and G. With respect to the product analytic 
structure Aft(0)  is a (not necessarily connected) Lie group. 

We now construct a representation O of Aft(0)  as follows. Let Aft(G) denote 

the Lie algebra of Af t (0)  and let Aut(~) be the Lie subalgebra corresponding to 

the subgroup Aut(G). Let q be the dimension of Aut(@). Evidently, q _-> 1. Set 

V = A q Aft(G), the q th exterior power of Aft(G) (as a vector space). Let 

0 : Aff(d)---~ GL(V) be the qth exterior power of the adjoint representation of 

Att(G). Let u be a vector in V generating the 1-dimensional subspace A q Aut @. 
We note here that the restriction of Q to Aut (0)  is the restriction of an algebraic 

R-representation of the respective Zariski closures; this can be seen as follows: 
The adjoint representation of Aut(G) on Aut(~) is the restriction of an 
R-representation (cf. pp. 127, [1]) and so is the natural representation of Aut (0)  

on ~ .  Since the restriction of 0 to Aut (d )  is an exterior power of the direct sum 

of these representations, it is the restriction of an R-representation. 

Let P(V) be the projective space associated to V. Let 7r : V -  (0)---~ P(V) be 

the quotient map and let 0 = 7r(u). Consider the action of Aft(0)  on P(V) 
induced by 0. For ~ E Aft(G) we shall denote by q~(~) the homeomorphism of 

P(V) induced by ~; i.e. ~(~)1r(v) = zr(p(~)v) for all v E V - (0). Now consider 

the isotropy subgroup, say J, of 0 under the action of Aft(O). It is straightfor- 

ward to verify that if ~ E Aft(G) then ~ ~ J if and only if Aut(@) is invariant 
under the adjoint action of ~. Thus, in particular, Au t (d )  is contained in Jr. Now 

let ~ E d n jr. Then in view of the above, ~ must normalise Aut~ the 

connected component of the identity in Aut(d) .  Let ~- E Aut~ and consider 
or = r" s r r -~. ~:-1 ~ Aft(G). Since ~: normalises Aut~ or E Aut~ On the 

other hand, since d is normal in Aft(G), o" ~ G. Hence ~r is the identity 

transformation. Thus for all ~" E Aut~ we have r .  ~. r -1= r But clearly 
~-. r  ~--1 = r(r as an element of G. Since the group of inner automorphisms of 
G is contained in Aut~ we deduce that r as above must be contained in the 

center of G. Thus d n J is contained in Z. 
We next prove that Z is contained in J. Z being finitely generated the 

subgroup of Aut~ consisting of all those automorphisms whose restriction to 

Z is the identity transformation is a subgroup of countable index in Aut~ 

Since it is a closed subgroup and Aut~ is connected the last assertion implies 

that the restriction of each ~- E Aut~ to Z is the identity transformation. Thus 

for any z E Z  and ~-E Au t~  have ~-.z .~--~ = ~-(z)= z. In particular, z 

normalises Aut~ Hence by our earlier remark Z is contained in Jr. 
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Combining the results, we deduce that J = Aut((~) �9 Z. Now let a : G ~ P(V)  

be the map defined by a (g)  = ~0(~)0 where g is a representative for g ~ G = 

G / Z  in (~. In view of the above, a is a well-defined continuous one-one map. 

Let r ~ A u t ( ( ~ )  and let ~ be the factor automorphism of �9 on G. Let 

g ---- x Z / Z  E G. Then we have 

= = . x ) o  = . x . 

~-- ~O(r " X " "f--1)O = ~ ( T ( X  ))O ~- O~(~ (g ) ) .  

In other words for ali ~- ~ Aut(G) we have 

(3.3) ~o(~'). a = a .  ? 

where ? is the factor automorphism of z on G. 

Now let A be an automorphism of G. Let fi~ be the unique automorphism of 

(~ which has A as its factor on G. Let F be the non-wandering set of A. Let E 

be the closure of a (F )  in P(V).  Using (3.3) it is easy to verify that E is 

q~ (fi,)-invariant and that the restriction of ~0 (A) to E is non-wandering. Now let 

IE and N~ be the subgroups of GL(V) defined by (2.1), for E in the place of F. 

Let ~3 = 0(Aut((~)). Since the restriction of 0 to Aut((~) coincides with the 

restriction of an (algebraic) R-representation, by Lemma 2.3 cg is an almost 

algebraic subgroup of GL(V). Therefore by Corollary 2.4, if H is the closed 

subgroup generated by 0(fi~) and Is n ~, then Ie n ~ is normal in H and 
H/IE n ~ is a compact group. Let I~ = O-l(I~ n c~) and let H '  be the closed 

subgroup of Aut(G) generated by fi~ and Ik. Then in view of the above, I~ is 

normal in H' and H't I  ' 1  ~ is a compact group. 

We shall now obtain a continuous action of H'/I~ on F extending the action of 

A. For any ~- E H '  let ? denote the factor automorphism of z on G. Let o" ~ Ik 

be arbitrary. Then q~(o-) fixes every point in E. Recall that a is a one-one map 
and that a (F) is contained in E. In view of (3.3), the previous assertion therefore 

implies that ~ fixes every point in F. Also F is invariant under A, which indeed is 

the factor automorphism of fi,. Since F is a closed set, from the last two 

assertions in particular it may be deduced that for all ~- ~ H '  and y E F, z(y) is 

r l I  contained in F. We therefore get an action of the compact group K = H /  E 

defined by (k, y) ~ ?(y) for all y E F and k E K, z E H' being any representa- 

tive of k. The action is clearly well defined and continuous. Further, the 

homeomorphism corresponding to AI~/Ik  evidently coincides with the action 

of A. 

3.4. COROLLARY. Let G be either R" or a connected Lie group with trivial 
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center. Let A be an automorphism of G and let F be the non-wandering set of A. 

Then any compact subset of F is contained in a compact A-invariant subset. 

Further, the action of { A J I j E Z }  on any compact A-invariant set is 

equicontinuous. 

PROOF. IS obvious from Theorems 3.1 and 3.2. 

3.5. COROLLARY. Let G and A be as in the above corollary. Let tz be a 

measure on G which is quasi-invariant and ergodic under the action of A. Suppose 

that there does not exist a relatively discrete orbit E such that tz(E) > O. Then we 

have the following: 

(i) The support of tz is compact. 

(ii) Let X = support of lz. Then X is A-invariant and the restriction of A to X is 

topologically conjugate to a translation on a compact abelian group ; i.e. there exist 

a compact abelian group T, a E T and a homeomorphism q~ of T onto X such that 

~(at) = A(q~(t)) for all t E T. 

(iii) If, further, ~ is A-invariant and finite then under (any) q~ as in (ii)/x is the 

image of the Haar measure m on T, with appropriate total measure ; i.e. ~ induces 

a metrical isomorphism of the translation by a of (T, m)  and the automorphism A 

of (G,I~). 

PROOF. Under the hypothesis on/z, as above, by Remark 1.1 the support of/x 

is A-invariant and is contained in the non-wandering set of A. Hence by 

Theorems 3.1 and 3.2 there exists a continuous action of a compact abelian 

group K on supp/.~ extending the action of A. The partition of supp/z into orbits 
of K is a countably separated partition (cf. [5] for a more general result). Since/z 

is ergodic with respect to the action of A we get that/z is concentrated on a 

single orbit of K. Thus supp/z is a single orbit of K. Hence assertion (i) is 

obvious. Next let Xo E X = supp/x and let I be the isotropy subgroup of x0 under 
the K action. Put T = K/L  Let k be the element of K whose action on X 

coincides with that of A, and let a E T be the coset of k. Let q~ : T ~ X be the 

homeomorphism defined by ~(t)  = [Xo where t E T and [ is any representative 

of t in K. Then evidently assertion (ii) is satisfied. Assertion (iii) follows easily 

from the fact that (up to a scalar multiple) the Haar measure of T is the only 

finite measure invariant under translation by a. 

We shall next deduce certain consequences of the above corollaries for 

automorphisms of more general groups including all Lie groups. We need the 

following. 

3.6. LEMMA. Let G be a connected non-compact Lie group. Then there exists a 
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closed characteristic subgroup N of G such that G / N  is either (a) topologically 

isomorphic to R", with n >-_ 1, or (b) a non-compact Lie group with trivial center. 

PROOF. We define inductively a sequence {Gi}~ of quotients of G as follows: 

Set Go = G and for i E N let Gi = Gi-1/Zi-1 where Zi_l is the center of G~_~. 

Then each G~ is a Lie group of the form G/N~ where N~ is a closed characteristic 

subgroup of G. Let m E N be such that Gm has least possible dimension. Then 

clearly for all r _-> m, Z, is a discrete subgroup of G,. Let ~7 :Gm/Zm ---> G,,+~ be 

the natural quotient map. Then r/-~(Z,,+~) is a discrete normal subgroup of G,,. 

Since the latter is connected it follows that ~7-1(Zm+1) is contained in its center. In 

other words, r/-~(Z,,+l) is contained in Zm and hence Zm+l is trivial. 

If Gm+~ is non-compact then in view of the above we are through. Now 

suppose that Gm+l is compact. Let 0_--< r < m be the smallest integer such that 

G,+~ is compact. As a connected Lie group whose quotient by its center is 

compact, G, is isomorphic to R" x C (direct product) where n _-> 0 and C is a 

compact group. Since by choice G, is non-compact n _-> 1. It is now evident that 

G admits a characteristic subgroup N such that G I N  is topologically isomorphic 

to R", where n _-> 1. 

3.7. THEOREM. Let G be a connected, locally compact, non-compact topologi- 

cal group. Then there exists a closed characteristic subgroup N of G such that G / N  

is either (topologically isomorphic to) R", n > 1 or a non-compact Lie group with 

trivial center, and the following assertion holds : Let A be a continuous automor- 

phism of G and let F be the non-wandering set of A. Let Y be the closure of the 

image of F in G / N under the quotient map. Then there exists a continuous action of 

a compact group K on Y extending the action of the factor automorphism. Also, if 

i ~ is an A -quasi-invariant ergodic measure on G such that there exists no relatively 

discrete orbit of positive p-measure, then the image of supp/z in G / N is a bounded 

subset. 

PROOF. Under  the above hypothesis on G there exists a unique maximum 

compact normal subgroup M of G such that G / M  is a Lie group (cf. chapter IV, 

[7]). It is easy to prove that M is a characteristic subgroup of G (i.e. A (M) = M 

for any continuous automorphism A of G). Combining this with Lemma 3.6 we 

deduce that there exists a closed characteristic subgroup N of G such that G I N  

is either R", n => 1 or a non-compact Lie group with trivial center. The theorem 
now follows from Theorems 3.1 and 3.2 and Corollary 3.5; it is enough to note 

that Y is contained in the non-wandering set of the factor automorphism of A 

on G/N. 
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3.8. COROLLARY. Let G be a locally connected locally compact non-compact 

group and A be a (continuous) automorphism of G. Then the action of A on G 
admits no dense orbit; i.e. {AJ(x) l j  EZ} is not dense in G for any x E G. 

PROOF. If possible let x E G be such that E = {A J(x) [ j ~ Z} is dense in G. 

Since G is locally connected, the connected component G o of the identity in G is 

an open subgroup of G. Hence there exists j ~ Z such that A J (x) ~ G ~ Since G o 

is A-invariant we deduce that x ~ G O and that G o= G; i.e. G is connected. 

Now by passing to quotient by N as in Theorem 3.7 we may assume that G is a 

non-compact group satisfying the hypothesis of Corollary 3.4. Suppose x E G is 

such that its orbit under A is dense. Then x is a non-wandering point for A. By 

Corollary 3.4 the orbit of x must be bounded. This implies that G is compact, 
contradicting the hypothesis. Hence the corollary. 

3.9. COROLLARY. Let G be a locally connected, locally compact non-compact 
topological group and let A be a continuous automorphism of G. If  tz is an A -  
quasi-invariant ergodic (o-finite ) measure then it is supported on a proper subset 

of G; i.e. there exists a non-empty open subset f~ of G such that/x(I~) = 0. In 

particular, the Haar measure of G is not ergodic with respect to any continuous 

automorphism of G. 

PROOF. This can be deduced from Corollary 3.8 using standard techniques. 

We omit the details. 

w Comments and questions 

It seems reasonable to the author to expect that any non-atomic ergodic 

quasi-invariant measure of an automorphism of any connected Lie group would 

have compact support. Further, the analogues of assertions (ii) and (iii) in 

Corollary 3.5 may be expected to hold for any Lie group with no non-trivial 

compact normal subgroup. 
As mentioned in the introduction, Corollary 3.9 is also true for affine 

automorphisms in the place of automorphisms. The author has recently obtained 

a direct proof of the analogue of Corollary 3.8 for all afline automorphisms of 

connected locally compact groups, which will appear elsewhere. 

At present the author has certain technical difficulties in proving the analogue 

of Theorem 3.2 for affine transformations. We note, however, that by imitating 

the proof of Theorem 3.2 it is easy to prove the following. 

4.1. TI-IEOREM. Let G be an almost algebraic subgroup of GL(n, R), n _-> 1. 
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Suppose that the group of all automorphisms of G is an almost algebraic subgroup 

(when viewed as a group of linear automorphisms of the Lie algebra of G).  Then 

any non-atomic measure on G which is quasi-invariant and ergodic under the 

action of an affine transformation of G, has compact support. 

Added  in proof. The ana logue  of Corol lary  3.8 referred to above may be 

found  in J. Lond.  Math.  Soc. 25 (1982), 241-245. 
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